
AUTOMATING

YOUR
EBOOK
BUILDS

Automating your Ebook builds

Damian Connolly

2016

Copyright

Copyright © 2016 Damian Connolly

All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic
or mechanical methods, without the prior written permis-
sion of the publisher, except in the case of brief quotations
embodied in reviews and certain other non-commercial uses
permitted by copyright law.

1

Automating Your Ebook

In a previous blog post I talked about a tool that I use to help
patch the OPF file in an EPUB so it can be used better with
a MOBI (to be clear, you can use the default no problem, I
just wanted to be able to add extra entries to the nav and
optionally remove the cover).

With this post, I wanted to cover how I use that tool in
my build chain so that I can automatically produce an EPUB,
a PDF, and a MOBI version of my book any time I make an
edit. By automating all of this, I make my life a lot easier; I
get the computer to do all the boring work so I don’t have to.

• The final versions are ready in a few seconds
• I keep one master document, so that all versions are up

to date
• There no chance of accidently making an error - once

you’re happy with the results, you know it’ll always be
the same.

2

https://damianconnolly.com/2016/08/12/opf-patcher/

So, with that in mind, this is my guide on automating
your Ebook builds (with amazing graphics).

3

The tools

We’re going to be using the power of the command line in order
to chain all our commands together. If you’re not familiar
with the command line, or terminal, it’s a way of calling
programs with code, without going through a GUI (using the
mouse to double-click on an icon, etc). Most programs allow
themselves to be called through the command line.

We’re going to be writing all our commands into a special
file called a batch file (.bat) (called a shell script (.sh) if your
on a Mac) which will allow us to run it whenever we want
without having to remember all the commands.

4

Pandoc

This is the workhorse of the bunch, and it’s really a fantastic
tool. Pandoc is a document converter, taking a document in
one format and outputting it in another. We’ll use this to
making our EPUB and PDF.

Simply head over to the Pandoc site and download it.
For making our PDF, we’ll need a version of LateX, which

is simply a tool used to create PDFs programatically (for an
ubiquitous format, they’re surprisingly finicky to get right).
Depending on your platform, download MiKTeX (Windows)
or MacTeX (Mac). When you’re installing, make sure that
you select the option to allow it to automatically download
whatever packages it needs, otherwise you’ll have problems
with the script (as it’ll be waiting for an answer to a question
that you won’t see).

5

http://pandoc.org/installing.html
http://miktex.org/
http://www.tug.org/mactex/morepackages.html

KindleGen

KindleGen is Amazon’s program for creating MOBIs from
EPUBs (or from scratch if you have the right files). This lets
you create the final Kindle file and see how it looks before
you release your book - which is obviously useful.

You can get it from the Amazon website. Remember the
path where you unzip it as you’ll need it later.

One thing to keep in mind when making the MOBI is
that the current advice from Amazon is to upload your cover
with your file and they’ll combine it in the final product,
rather than having it already combined. This is where the
OPFPatch program comes in. When building, we’ll create two
MOBI files; one with a cover and one without (for distributing
outside of Amazon if you want).

6

https://www.amazon.com/gp/feature.html?docId=1000765211

OPFPatcher

This is the program I use to patch the OPF file in the generated
EPUB to do a few things:

• Optionally remove the cover
• Optionally add a link for the start of the book, so when

readers first open the book, it’s on the right page
• Optionally add a link for the dedication section
• Optionally add a link for the acknowledgements section
• Optionally add a link for the back-of-the-book section

I’ve covered the OPFPatcher in a previous post, so you
can head over there if you want to read more about it and
how to get set up, or just go and grab the source.

7

https://damianconnolly.com/2016/08/12/opf-patcher/
https://bitbucket.org/divillysausages/opfpatcher

7ZIP

We create our MOBI file from our EPUB, but before we do
that, we want to patch the OPF file, to add a few entries
in the menu and optionally remove the cover file. To get at
the OPF file, we need to unzip the EPUB, which is where
7Zip comes in (Windows actually comes with a built-in ZIP,
but I couldn’t find a way to access it through the command
line). It’s a fantastic program that I recommend having, even
outside of this.

You’ll only need this on Windows as Mac has its own
built-in, so if that’s you, you can download 7Zip here

8

http://www.7-zip.org/download.html

PDFToolkit

When creating our PDF, we’ll want a full page image for the
cover, while having the proper margins for all the other pages.
Rather than mess around trying to hack something in LateX,
I took the simpler approach of producing two PDFs, and then
combining them into the final product. PDFToolkit allows
me to do that.

As a side note, it can do a hell of a lot more, so if you’re
interested, feel free to dive in. You can download PDFToolkit
here.

9

https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/

A VERY quick primer on the command

line

To get you up to speed so that you’re a bit more comfortable
reading the shell script attached to this post (as you’ll need
to edit it), here’s a quick rundown on what’s what.

To edit the file, right-click on it, and select Edit in Notepad

or whatever you text editing program of choice is (NOTE:
use an editor that can save to plain text - i.e. don’t use
Word). If you have a program like the fantastic Notepad++
or SublimeEdit etc, then use that, as you’ll get colour coding,
which will make your life easier. NOTE: plain Notepad or
Wordpad will still get the job done, it’s just easier when
everything’s coloured.

Now, on to working in the command line.

10

https://notepad-plus-plus.org/
https://www.sublimetext.com/

Comments

Any line that starts with :: is considered a comment and
won’t be executed. If a particular step isn’t working, then
you can comment it out (i.e. ignore it), by adding :: to the
start of the line.

:: I can write whatever I want here as it's going to be ignored

11

Printing & debug messages

Any line that starts with echo will print to the console (the
window that you see when you run your script). Use this to
display messages or understand what’s going on.

echo Starting super complicated process...

12

Variables

Any line that starts with set is declaring a variable, which
we’ll use to make our life easier. The format is set KEY=VALUE,
which means that any time we use %KEY% (the name of the
variable surrounded by % symbols, the script will substitue
in VALUE). At the top of the script, you’ll find some variables
for paths to programs used. Replace the values (between the
quote marks) with the right path for your computer.

set PATH_TO_FILE="C:/Users/.../myFile.txt"

echo %PATH_TO_FILE%

13

Run-on lines

Any line that ends with ˆ is a run-on line, meaning that
we can use multiple lines for calling a program with all the
options, making it easier to read, while the script will see it
as only one line. So:

someExe^

-option1 foo^

-option2 bar^

-option3

Is the equivalent of writing

someExe -option1 foo -option2 bar -option3

14

Syntax

Whenever you see a particular line, the first word or path
is always the name of the program that we’re executing.
Everything else on that line are parameters that we’re passing
to the program to get it to do certain things. In order for
the program to know what parameter is for what, you’ll see
things like this:

-option1 foo

Anything with a - (or sometimes a --) in front of it is a
parameter, and everything immediately following it up until
the next parameter is its value. In the above example, the
parameter -option1 has a value of foo. Don’t worry if you
don’t get this right away; it’ll become apparent when you see
the actual code.

15

Paths

A word of note about the name of the program that we’re
calling. If you see the name on its own (e.g. someExe), then
the exe with that name needs to be in the same folder as the
script calling it, or else be known to the computer. Generally
the latter means adding its folder to the PATH variable. This
is a special variable that simply contains a list of paths. When
you make a call to an exe that isn’t known, your computer
will look in all the directories declared in PATH until it finds
it. If you don’t know how to change the PATH variable, this is
how you do it on Windows and this is how you do it on Mac.

Again, this isn’t something that we need to do. An al-
ternative to this is to simply enter a relative or full path
to the exe in question. Instead of calling 7z to access the
7Zip program, you’d call C:/Program Files/7-Zip/7z, or
../../relative/path/to/7-Zip/7z. Generally, absolute
paths are easier to deal with. If your path contains a space,
then be sure to escape it (add a \ before the space), or put
quotes around the full path.

:: call the program "Foo", which is in the same folder

./foo

:: or if we're on Windows, or the folder where "Foo" is located is in the PATH variable

16

http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/
http://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/
http://osxdaily.com/2014/08/14/add-new-path-to-path-command-line/

foo

:: "Foo" is in the folder up one level

../foo

:: up two levels

../../foo

:: up two levels and in a sub-folder

../../FooFolder/foo

:: direct path (in quotes as there's a space in "Program Files")

"C:/Program Files/FooFolder/foo"

17

The folder structure

We’re going to follow a defined folder structure to keep things
organised. While you don’t have to keep the same thing, you
should at least use it until your comfortable with the script
before changing anything.

This is what you’ll find if you download the files at the
end of the post:

• bin/ - The folder where our final Ebooks are going to
be saved

• cover/ - The folder where we keep our cover images.
There are two: one JPG and one PDF. The PDF cover is
simply the JPG saved as a full page PDF. Most graphics
programs will let you do this

• latex/ - The folder where we keep our snippets for Latex,
the language that we use to generate our PDF. The file
inside, titlesec.tex, simply makes sure that each new
chapter in our book starts on a new page

18

• metadata/ - The folder containing the metadata about
our book. There are two files inside, one for the
EPUB/MOBI and one for the PDF. Simply edit the
contents so they’re about your book

• snippets/ - An optional folder for snippets, or additional
content to add to your book. I use this if I generate pre-
release and post-release versions of my book, where I can
change the content of the Thank you page accordingly

• Book.md - Our book file, in Markdown format. You
don’t have to write your book in Markdown - it could
just as easily be a Word doc - but it’s very easy to
use and makes converting to HTML (the format for
webpages and EPUBs) a cinch

• generate-mac.sh - The shell file to generate our book
(Mac). Everytime you want to make a new version,
you’d simply run this, either by double-clicking on it, or
opening the command line and typing its name

• generate-pc.bat - The batch file to generate our book
(Windows). Everytime you want to make a new version,
you’d simply run this, either by double-clicking on it, or
opening the command line and typing its name

• README.txt - A simple README text file describing
the files and how to run the script. It also contains a
checklist of everything you need to change in order to
run this script on your own book

19

https://daringfireball.net/projects/markdown/

• style.css - As EPUB (and thus MOBI) are based on
HTML, you handle the style of your book in the same
way as you’d style a webpage. The style.css file contains
a number of declarations to have a simple, yet clean,
output

20

The code

Alright! Let’s get down to business. I’m going to explain
the different sections of code in the script. Don’t worry too
much about copying them all down; it’s all in the generate-

pc.bat/generate-mac.sh file.
To show you that everything works, you’ll also have a full

working sample of turning this very post into a small Ebook.
Feel free to play around with it and change whatever you
want in order to get the hang of things.

21

Step 1: The setup

The first thing that we’re going to do is declare the locations
of the different tools that we’re going to use while building our
books. You’ll need to change the location to the equivalent
on your computer.

set ZIP="C:/Program Files/7-Zip/7z"

set KINDLEGEN="PATH-TO-KINDLEGEN/kindlegen2-9/kindlegen"

set OPFPATCH="PATH-TO-OPFPATCHER-EXE"

set BOOKNAME="AutomateYourEbook"

Note that the .exe at the end of programs is im-
plicit - e.g. you can have kindlegen2-9/kindlegen or
kindlegen2-9/kindlegen.exe.

For the BOOKNAME variable, this is to make it easier when
it comes to changing it for your own book, as you only need
to change it in one place rather than 100. So if you see
%BOOKNAME%.epub, you can read AutomateYourEbook.epub.

Next we’re going to clean up any previous build results so
that don’t have any old files hanging around. The easiest way
to do this is to simply delete the bin/ folder and recreate it.

echo Cleaning previous...

rmdir bin /s /q

mkdir bin

22

Step 2: Converting to EPUB

The first conversion that we’re doing is getting our EPUB.
We’re going to use the fantastic Pandoc for this, and the code
looks like:

pandoc -s^

-S^

--dpi=350^

--toc^

-M toc-title:"Table of Contents"^

metadata/metadata.md^

Book.md^

snippets/thankyou.md^

-o bin/%BOOKNAME%.epub

Remember that ˆ indicates a run-on line, so everything
after pandoc is the equivalent of a single line. To understand
what’s going on:

• pandoc - We’re calling the Pandoc exe here. When you
install Pandoc, it’ll automatically add itself to the PATH
variable, so we’re able to call it without specifying where
it is

• -s - We’re creating a standalone document, meaning
that it’ll generate a proper file rather than just a snippet

23

• -S - We want typographically correct output; straight
quotes to curly quotes, using em-dashes, etc

• --dpi=350 - We want a resolution of 350 dots per inch.
When working with pixels on something that could be
printed, we always need to declare the DPI. As a general
rule of thumb, 72 DPI is screen resolution, 300+DPI is
print resolution

• --toc - We want to generate a table of contents
• -M toc-title:"Table of Contents" - We want to

use “Table of Contents” as the title for our table of
contents page

• metadata/metadata.md - Include the metadata for our
book. NOTE: when including files, they’re taken in
order

• Book.md - Include the book itself
• snippets/thankyou.md - Include the Thank you snip-

pet (optional)
• -o bin/%BOOKNAME%.epub - Save the output in the bin/

folder and call it AutomateYourEbook.epub (remember,
%BOOKNAME% expands to AutomateYourEbook)

24

Step 3: Converting to PDF

For the PDF version, we have 3 steps:

• Generate the text version of the book
• Combine the text version with our previously generated

cover to create the final version
• Delete the text version as we don’t need it anymore

The code:

pandoc -s^

-S^

--dpi=350^

-V colorlinks=true^

-V geometry:paperwidth=5in^

-V geometry:paperheight=8in^

-V geometry:left=0.5in^

-V geometry:right=0.5in^

-V geometry:top=0.5in^

-V geometry:bottom=1in^

-V fontsize=11pt^

-V linestretch=1.4^

-V indent=true^

-V subparagraph=true^

-V documentclass=report^

25

-H latex/titlesec.tex^

metadata/metadata_pdf.md^

Book.md^

snippets/thankyou.md^

-o bin/%BOOKNAME%_text.pdf

What’s going on:

• pandoc - Again, we’re calling Pandoc to generate our
file

• -s - We’re creating a standalone document
• -S - We want typographically correct output
• --dpi=350 - Use a DPI of 350 dots per inch - Important

as PDFs are often printed
• -V colorlinks=true - Colourise any HTML links

found in the book so readers know that they’re links
• -V geometry:paperwidth=5in - Set the physical width

of our page to 5 inches
• -V geometry:paperheight=8in - Set the physical

height of our page to 8 inches
• -V geometry:left=0.5in - Add a margin of half an

inch to the left side of the page
• -V geometry:right=0.5in - Add a margin of half an

inch to the right side of the page
• -V geometry:top=0.5in - Add a margin of half an inch

to the top of the page

26

• -V geometry:bottom=1in - Add a margin of an inch
to the bottom of the page

• -V fontsize=11pt - Use a font size of 11pt - NOTE:
when talking about print documents, we use font sizes
in pt rather than px, which is pixels (what we’d use on
the web)

• -V linestretch=1.4 - Set the line height to 1.4 times
the font size. Bigger values mean that your lines are
further apart

• -V indent=true - All paragraphs are indented
• -V subparagraph=true - Use the default sub paragraph

(which is necessary for the script that we use to put
chapters on their own pages)

• -V documentclass=report - Latex has a number of
default document classes, or templates, to use for your
book. For this example, I’ve found that the report class,
matched with our title-on-a-new-page snippet, gives a
good overall output. If you’re more familiar with Latex,
you can define your own document class to get full
control. NOTE: there’s also a book document type that
you can check out to see if it fits your needs

• -H latex/titlesec.tex - Use the snippet that will
make new chapters go on their own page

• metadata/metadata_pdf.md - Add the metadata for
our PDF

27

• Book.md - Add the book itself
• snippets/thankyou.md - Add the Thank you snippet

(optional)
• -o bin/%BOOKNAME%_text.pdf - Save the output in the

bin/ folder and call it AutomateYourEbook_text.pdf

Now that we have the text version of our book, we want
to combine it with the cover:

pdftk cover/cover.pdf bin/%BOOKNAME%_text.pdf cat output bin/%BOOKNAME%.pdf

What’s going on:

• pdftk - We’re calling the PDFToolkit program here.
Again, it should add itself to your PATH when installing

• cover/cover.pdf - Take the cover PDF file
• bin/%BOOKNAME%_text.pdf - Take the text version of

our book
• cat - Combine (concatenate) them
• output bin/%BOOKNAME%.pdf - Save the output in the

bin/ folder and call it AutomateYourEbook.pdf

Finally, we can get rid of the text version of the book as
we don’t need it anymore:

rm bin/%BOOKNAME%_text.pdf

28

Step 4: Converting to MOBI

Converting to MOBI is an optional step. I do it because I
want to edit the files to add a few more things to the menu,
but you can simply take your EPUB file and upload it directly
to Amazon. Similarly, if you want to generate a MOBI, but
don’t care about editing anything inside it, you can just skip
to the second last step.

To do everything we need to:

• Unzip our EPUB
• Call OPFPatcher to patch our additions. For the

Amazon version, we’re going to be creating it without a
cover (as they combine the cover when you upload your
file), so we also delete any cover files

• Rezip to a new EPUB
• Convert our EPUB to MOBI
• Finally, remove any temporary files

First, unzip our EPUB:

%ZIP% x bin/%BOOKNAME%.epub -o./bin/%BOOKNAME% > nul

What’s going on:

• %ZIP% - We’re calling the 7Zip program, but using the
path that we declared as a variable at the start of the
script

29

• x bin/%BOOKNAME%.epub - Unzip our bin/AutomateYourEbook.epub

file
• -o./bin/%BOOKNAME% - Unzip it to the folder

bin/AutomateYourEbook (which will be created)
• > nul - This is just a trick to set the output of 7Zip

to nowhere (nul), meaning that we won’t see it on the
screen

Call the OPFPatcher to patch in our changes. To get the
names of the files that we’re going to use, you can simply
unzip the EPUB once manually to find them.

call %OPFPATCH% -i bin/%BOOKNAME%/content.opf^

--cover-html cover.xhtml^

--book ch004.xhtml^

--bob ch029.xhtml

What’s going on:

• call %OPFPATCH% - We’re calling the OPFPatcher pro-
gram, using the path that we declared as a variable at
the start of the script

• -i bin/%BOOKNAME%/content.opf - The path to our
OPF file. The OPF file is what declares the contents
of the Ebook, what to put in the menu, what to put in
the spine etc

30

• --cover-html cover.xhtml - This is the name of the
file containing our cover, which will be deleted

• --book ch004.xhtml - The “book” part of the Ebook
starts here. Before this you can have the table of con-
tents etc. This entry means that when readers first open
your Ebook, they fall on the right page immediately

• --bob ch029.xhtml - The “back of the book” section
starts here. This can include Acknowledgements, Thank
you, etc

For a full list of the options, check out the post on the
OPFPatcher

As we’re getting rid of the cover entry, we can also delete
the files, making our final MOBI file smaller:

rm bin\%BOOKNAME%\cover.xhtml

rm bin\%BOOKNAME%\media\cover.jpg

We can now rezip the folder into an EPUB again. We’ll
use a temporary name for it:

cd bin/%BOOKNAME%

%ZIP% a ../%BOOKNAME%_kindle.epub * > nul

cd ../../

What’s happening there is that we’re zipping all of
the contents of the folder to a file called AutomateYourE-

31

https://damianconnolly.com/2016/08/12/opf-patcher/
https://damianconnolly.com/2016/08/12/opf-patcher/

book_kindle.epub and outputting any messages to nul

(i.e. hiding them).
We can now use Amazon’s KindleGen program to convert

the EPUB to MOBI:

%KINDLEGEN% bin/%BOOKNAME%_kindle.epub -o %BOOKNAME%.mobi

The %KINDLEGEN% variable refers to the path that we de-
clared at the start of the script.

Finally, we can remove the unzipped folder and our modi-
fied EPUB, which we don’t need anymore.

rmdir bin\%BOOKNAME% /s /q

rm bin/%BOOKNAME%_kindle.epub

We now have a MOBI file that we can use when uploading
to Amazon - Amazon will combine it with the cover of the
book at that point.

32

Step 5: Creating a non-Amazon MOBI

We can run nearly the exact same steps again for generating
a MOBI for use outside of Amazon. This can be handy if
you’re distributing review copies or for certain promos.

There are only two differences. One is with the call to
the OPFPatcher, where we specify that we want to keep the
cover:

call %OPFPATCH% -i bin/%BOOKNAME%/content.opf^

--book ch004.xhtml^

--bob ch029.xhtml^

--keep-cover

And the second is when we’re generating the MOBI file,
we specify a different name for it, in this case AutomateY-

ourEbook_nonAmzon.mobi:

%KINDLEGEN% bin/%BOOKNAME%_kindle.epub -o %BOOKNAME%_nonAmazon.mobi

33

Running the script

If you’re running this for your own book, you’ll need to modify
the relevant parts in the script before doing anything. If you
want to just run it to see the output, then you can just run it
as it, and it’ll produce the Automate Your Ebook Ebook.

To run it, we can do one of two things.

34

Running by double-clicking on it

The simplest solution. Simply double-click on the file. It will
run the code and automatically close the window afterwards.
When you’re sure that everything is working, this is the way
to go. If you’re just getting started, then you might want to
read any output before the window is closed, so go for option
2 instead.

If you’re on a Mac, you’ll need to make the file exectuable
before double-clicking on it will work. To do this, simply
open a new Terminal window (hold Cmd + Space and type
“Terminal”, then Enter). Once opened, type chmod +x, then
drag the file into the Terminal window so it auto fills in the
path. Make sure there’s a space between the +x and the path.
The final command should look something like this:

chmod +x ~/Documents/Writing/AutomateYourEbook/generate-mac.sh

Hit Enter and it’ll modify the file permissions so we can
double-click on it.

35

Running in the command line/Terminal

This will let you see any potential errors or warnings - always
a good thing if this is your first time doing it with a new
project, as for one, it’ll show you errors when generating the
final MOBI file.

For Windows we need to open a command terminal in the
right folder. There are two simple ways to do this. One is to
click in the address bar of the folder itself and type “cmd”.
This will open a new terminal window at the right place.
Otherwise we can open a new window from the Start menu.
If you’re on Windows 10, hit the Windows key (normally
between the Fn and Alt keys) and type “cmd”, then Enter.
On other versions of Windows, you can enter “cmd” in to the
Run command. Once you have the window open, type cd,
then drag the right folder into the command window. This
will copy the path (make sure there’s a space between the cd
and the path). Hit Enter and you’re there.

For Mac, open a new Terminal window (hold Cmd +
Space and type “Terminal”, then Enter), type cd, and drag
the folder into the Terminal window to copy the path. Make
sure there’s a space between the cd and the path, hit Enter,
and you’re there.

Once in the right folder, simply type ./ followed by the
name of the script (you can start typing “gen”, then hit Tag

36

to auto-complete), and hit Enter to execute it. The ./ at the
start is only to say that we’re looking inside the current folder,
so it’s not always necessary (it generally isn’t on Windows).

37

Testing your files

To view your EPUB files, there are a variety of programs at
your disposal. Personally I use Adobe Digital Editions, which
have desktop, Android, and iOS versions. You can also use
Calibre, which is an Ebook management software and has the
benefit of allowing you to verify that your metadata has been
embedded properly.

To actually see what your MOBI looks like and to make
sure all the menu links are fine, you can download the Kindle
Previewer programmer, which will let you open your MOBI
file.

You can also use your Send to Kindle program to actually
send it to your device, which is always recommended as noth-
ing beats the actual hardware. If you don’t have a Kindle
device, they also provide Android and iOS versions.

PDF is the simplest of the lot, as you can use Adobe Ac-
robat Reader, which again also has Android and iOS versions,
or you if you’re using an up-to-date browser such as Chrome,

38

http://www.adobe.com/solutions/ebook/digital-editions.html
https://calibre-ebook.com/
https://www.amazon.com/gp/feature.html?docId=1000765261
https://www.amazon.com/gp/feature.html?docId=1000765261
https://www.amazon.com/gp/sendtokindle
https://play.google.com/store/apps/details?id=com.amazon.kindle
https://itunes.apple.com/us/app/kindle-read-ebooks-magazines/id302584613?mt=8
https://get.adobe.com/reader/
https://get.adobe.com/reader/

you can simply open the PDF directly, as they now support
native viewing.

39

The final result

There you have it! It’s a lot to take in at first, but the
joy of this is that once you have it done, you don’t need to
understand it anymore; you simply run the script every time
you have a change and get your new files.

To see it in action, check out the files at the end of the
post. They take this very post and make it an Ebook, which
shows you just how easy it is.

NOTE: In the download, the script will be named with a
.txt file extension. You’ll need to change this to .bat (Windows)
or .sh (Mac) to actually run it. The reason for this is that some
browsers will block a zip download if there’s an executable
file inside.

Of course, if you’ve any questions, then please, get in
touch!

40

About the author

Damian Connolly hails from Ireland, the land of myth and
legend, and currently lives in sunny Bordeaux, in the south-
west of France. By day, he makes video games, and by night,
instead of sleeping like he should be, he tinkers with whatever
the interest-du-jour is; he spends far too much time getting
distracted by shiny new technologies. Occasionally, he throws
it all out the window and writes.

Sometimes it’s worth reading.

You can find him on his website https://damianconnolly.
com, on Twitter at @divillysausages or on Facebook at https:
//www.facebook.com/DamianConnollyAuthor/

41

https://damianconnolly.com
https://damianconnolly.com
https://twitter.com/divillysausages/
https://www.facebook.com/DamianConnollyAuthor/
https://www.facebook.com/DamianConnollyAuthor/

Thank you

Thanks for checking out this sample. You can get the full
source files at https://damianconnolly.com/2016/08/19/
automating-your-ebook-builds/.

~Damian

42

https://damianconnolly.com/2016/08/19/automating-your-ebook-builds/
https://damianconnolly.com/2016/08/19/automating-your-ebook-builds/

	Copyright
	Automating Your Ebook
	The tools
	Pandoc
	KindleGen
	OPFPatcher
	7ZIP
	PDFToolkit

	A VERY quick primer on the command line
	Comments
	Printing & debug messages
	Variables
	Run-on lines
	Syntax
	Paths

	The folder structure
	The code
	Step 1: The setup
	Step 2: Converting to EPUB
	Step 3: Converting to PDF
	Step 4: Converting to MOBI
	Step 5: Creating a non-Amazon MOBI

	Running the script
	Running by double-clicking on it
	Running in the command line/Terminal

	Testing your files
	The final result
	About the author
	Thank you

